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PREFACE

“We see that the theory of probability is at bottom only common sense reduced

to calculation; it makes us appreciate with exactitude what reasonable minds feel

by a sort of instinct, often without being able to account for it. . . . It is remarkable

that this science, which originated in the consideration of games of chance, should

have become the most important object of human knowledge. . . .The most impor-

tant questions of life are, for the most part, really only problems of probability.” So

said the famous French mathematician and astronomer (the “Newton of France”)

Pierre-Simon, Marquis de Laplace. Although many people believe that the famous

marquis, who was also one of the great contributors to the development of probabil-

ity, might have exaggerated somewhat, it is nevertheless true that probability theory

has become a tool of fundamental importance to nearly all scientists, engineers, med-

ical practitioners, jurists, and industrialists. In fact, the enlightened individual had

learned to ask not “Is it so?” but rather “What is the probability that it is so?”

General Approach and Mathematical Level
This book is intended as an elementary introduction to the theory of probability

for students in mathematics, statistics, engineering, and the sciences (including com-

puter science, biology, the social sciences, and management science) who possess the

prerequisite knowledge of elementary calculus. It attempts to present not only the

mathematics of probability theory, but also, through numerous examples, the many

diverse possible applications of this subject.

Content and Course Planning
Chapter 1 presents the basic principles of combinatorial analysis, which are most

useful in computing probabilities.

Chapter 2 handles the axioms of probability theory and shows how they can be

applied to compute various probabilities of interest.

Chapter 3 deals with the extremely important subjects of conditional probability

and independence of events. By a series of examples, we illustrate how conditional

probabilities come into play not only when some partial information is available,

but also as a tool to enable us to compute probabilities more easily, even when

no partial information is present. This extremely important technique of obtaining

probabilities by “conditioning” reappears in Chapter 7, where we use it to obtain

expectations.

The concept of random variables is introduced in Chapters 4, 5, and 6. Discrete

random variables are dealt with in Chapter 4, continuous random variables in

Chapter 5, and jointly distributed random variables in Chapter 6. The important con-

cepts of the expected value and the variance of a random variable are introduced in

Chapters 4 and 5, and these quantities are then determined for many of the common

types of random variables.

8
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Additional properties of the expected value are considered in Chapter 7. Many

examples illustrating the usefulness of the result that the expected value of a sum

of random variables is equal to the sum of their expected values are presented.

Sections on conditional expectation, including its use in prediction, and on moment-

generating functions are contained in this chapter. In addition, the final section intro-

duces the multivariate normal distribution and presents a simple proof concerning

the joint distribution of the sample mean and sample variance of a sample from a

normal distribution.

Chapter 8 presents the major theoretical results of probability theory. In par-

ticular, we prove the strong law of large numbers and the central limit theorem.

Our proof of the strong law is a relatively simple one that assumes that the random

variables have a finite fourth moment, and our proof of the central limit theorem

assumes Levy’s continuity theorem. This chapter also presents such probability

inequalities as Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds.

The final section of Chapter 8 gives a bound on the error involved when a probability

concerning a sum of independent Bernoulli random variables is approximated by the

corresponding probability of a Poisson random variable having the same expected

value.

Chapter 9 presents some additional topics, such as Markov chains, the Poisson

process, and an introduction to information and coding theory, and Chapter 10 con-

siders simulation.

As in the previous edition, three sets of exercises are given at the end of each

chapter. They are designated asProblems, Theoretical Exercises, and Self-Test Prob-
lems and Exercises. This last set of exercises, for which complete solutions appear in

Solutions to Self-Test Problems and Exercises, is designed to help students test their

comprehension and study for exams.

Changes for the Tenth Edition
The tenth edition continues the evolution and fine tuning of the text. Aside from a

multitude of small changes made to increase the clarity of the text, the new edition

includes many new and updated problems, exercises, and text material chosen both

for inherent interest and for their use in building student intuition about probability.

Illustrative of these goals are Examples 4n of Chapter 3, which deals with comput-

ing NCAA basketball tournament win probabilities, and Example 5b of Chapter 4,

which introduces the friendship paradox. There is also new material on the Pareto

distribution (introduced in Section 5.6.5), on Poisson limit results (in Section 8.5),

and on the Lorenz curve (in Section 8.7).
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Chapter

COMBINATORIAL ANALYSIS

1
Contents
1.1 Introduction

1.2 The Basic Principle of Counting

1.3 Permutations

1.4 Combinations

1.5 Multinomial Coefficients

1.6 The Number of Integer Solutions of

Equations

1.1 Introduction
Here is a typical problem of interest involving probability: A communication system

is to consist of n seemingly identical antennas that are to be lined up in a linear order.

The resulting system will then be able to receive all incoming signals—and will be

called functional—as long as no two consecutive antennas are defective. If it turns

out that exactly m of the n antennas are defective, what is the probability that the

resulting system will be functional? For instance, in the special case where n = 4 and

m = 2, there are 6 possible system configurations, namely,

0 1 1 0

0 1 0 1

1 0 1 0

0 0 1 1

1 0 0 1

1 1 0 0

where 1 means that the antenna is working and 0 that it is defective. Because the

resulting system will be functional in the first 3 arrangements and not functional in

the remaining 3, it seems reasonable to take 3
6 = 1

2 as the desired probability. In

the case of general n and m, we could compute the probability that the system is

functional in a similar fashion. That is, we could count the number of configurations

that result in the system’s being functional and then divide by the total number of all

possible configurations.

From the preceding discussion, we see that it would be useful to have an effec-

tive method for counting the number of ways that things can occur. In fact, many

problems in probability theory can be solved simply by counting the number of dif-

ferent ways that a certain event can occur. The mathematical theory of counting is

formally known as combinatorial analysis.

13



14 Chapter 1 Combinatorial Analysis

1.2 The Basic Principle of Counting
The basic principle of counting will be fundamental to all our work. Loosely put, it

states that if one experiment can result in any ofm possible outcomes and if another

experiment can result in any of n possible outcomes, then there are mn possible

outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can

result in any one ofm possible outcomes and if, for each outcome of experiment

1, there are n possible outcomes of experiment 2, then together there are mn
possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all

the possible outcomes of the two experiments; that is,

(1, 1), (1, 2), . . . , (1,n)
(2, 1), (2, 2), . . . , (2,n)

#
#
#

(m, 1), (m, 2), . . . , (m, n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible

outcome and experiment 2 then results in its jth possible outcome. Hence, the set of

possible outcomes consists of m rows, each containing n elements. This proves the

result.

Example

2a

A small community consists of 10 women, each of whom has 3 children. If one

woman and one of her children are to be chosen as mother and child of the year,

how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first experi-

ment and the subsequent choice of one of her children as the outcome of the second

experiment, we see from the basic principle that there are 10 * 3 = 30 possible

choices. .

When there are more than two experiments to be performed, the basic principle

can be generalized.

The generalized basic principle of counting

If r experiments that are to be performed are such that the first one may result

in any of n1 possible outcomes; and if, for each of these n1 possible outcomes,

there are n2 possible outcomes of the second experiment; and if, for each of the

possible outcomes of the first two experiments, there are n3 possible outcomes

of the third experiment; and if . . . , then there is a total of n1· n2 · · ·nr possible
outcomes of the r experiments.
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Example

2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2

seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen.

How many different subcommittees are possible?

Solution We may regard the choice of a subcommittee as the combined outcome of

the four separate experiments of choosing a single representative from each of the

classes. It then follows from the generalized version of the basic principle that there

are 3 * 4 * 5 * 2 = 120 possible subcommittees. .

Example

2c

How many different 7-place license plates are possible if the first 3 places are to be

occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle, the answer is 26 · 26 ·
26 · 10 · 10 · 10 · 10 = 175,760,000. .

Example

2d

How many functions defined on n points are possible if each functional value is

either 0 or 1?

Solution Let the points be 1, 2, . . . ,n. Since f (i) must be either 0 or 1 for each i =
1, 2, . . . ,n, it follows that there are 2n possible functions. .

Example

2e

In Example 2c, howmany license plates would be possible if repetition among letters

or numbers were prohibited?

Solution In this case, there would be 26 · 25 · 24 · 10 · 9 · 8 · 7 = 78,624,000

possible license plates. .

1.3 Permutations
Howmany different ordered arrangements of the letters a, b, and c are possible?
By direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab,
and cba. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained

from the basic principle, since the first object in the permutation can be any of

the 3, the second object in the permutation can then be chosen from any of the

remaining 2, and the third object in the permutation is then the remaining 1.

Thus, there are 3 · 2 · 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used

for the 3 letters then shows that there are

n(n − 1)(n − 2) · · · 3 · 2 · 1 = n!

different permutations of the n objects.

Whereas n! (read as “n factorial”) is defined to equal 1 · 2 · · · n when n is a

positive integer, it is convenient to define 0! to equal 1.

Example

3a

How many different batting orders are possible for a baseball team consisting of 9

players?

Solution There are 9! = 362,880 possible batting orders. .
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Example

3b

A class in probability theory consists of 6 men and 4 women. An examination is

given, and the students are ranked according to their performance. Assume that no

two students obtain the same score.

(a) How many different rankings are possible?

(b) If the men are ranked just among themselves and the women just among them-

selves, how many different rankings are possible?

Solution (a) Because each ranking corresponds to a particular ordered arrangement

of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4!

possible rankings of the women among themselves, it follows from the basic principle

that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. .

Example

3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 aremath-

ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book.

Ms. Jones wants to arrange her books so that all the books dealing with the same

subject are together on the shelf. How many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are

first in line, then the chemistry books, then the history books, and then the language

book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos-

sible arrangements. Hence, as there are 4! possible orderings of the subjects, the

desired answer is 4! 4! 3! 2! 1! = 6912. .
We shall now determine the number of permutations of a set of n objects when

certain of the objects are indistinguishable from one another. To set this situation

straight in our minds, consider the following example.

Example

3d

How many different letter arrangements can be formed from the letters PEPPER?

Solution We first note that there are 6! permutations of the letters P1E1P2P3E2R
when the 3P’s and the 2E’s are distinguished from one another. However, consider

any one of these permutations—for instance, P1P2E1P3E2R. If we now permute the

P’s among themselves and theE’s among themselves, then the resultant arrangement

would still be of the form PPEPER. That is, all 3! 2! permutations

P1P2E1P3E2R P1P2E2P3E1R
P1P3E1P2E2R P1P3E2P2E1R
P2P1E1P3E2R P2P1E2P3E1R
P2P3E1P1E2R P2P3E2P1E1R
P3P1E1P2E2R P3P1E2P2E1R
P3P2E1P1E2R P3P2E2P1E1R

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-

ments of the letters PEPPER. .

In general, the same reasoning as that used in Example 3d shows that there are

n!
n1! n2! · · · nr!

different permutations of n objects, of which n1 are alike, n2 are alike, . . . ,nr are
alike.
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Example

3e

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the

United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament

result lists just the nationalities of the players in the order in which they placed, how

many outcomes are possible?

Solution There are
10!

4! 3! 2! 1!
= 12,600

possible outcomes. .

Example

3f

How many different signals, each consisting of 9 flags hung in a line, can be made

from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color

are identical?

Solution There are
9!

4! 3! 2!
= 1260

different signals. .

1.4 Combinations
We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different

groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this

question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to

then select the next item, and 3 ways to select the final item, there are thus 5 · 4 · 3

ways of selecting the group of 3 when the order in which the items are selected is

relevant. However, since every group of 3—say, the group consisting of items A, B,
and C—will be counted 6 times (that is, all of the permutations ABC, ACB, BAC,
BCA, CAB, and CBA will be counted when the order of selection is relevant), it

follows that the total number of groups that can be formed is

5 · 4 · 3

3 · 2 · 1
= 10

In general, as n(n − 1) · · · (n − r + 1) represents the number of different ways that

a group of r items could be selected from n items when the order of selection is

relevant, and as each group of r items will be counted r! times in this count, it follows

that the number of different groups of r items that could be formed from a set of n
items is

n(n − 1) · · · (n − r + 1)

r!
= n!

(n − r)! r!

Notation and terminology

We define

(
n
r

)
, for r … n, by

(
n
r

)
= n!

(n − r)! r!
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and say that

(
n
r

)
(read as “n choose r”) represents the number of possible

combinations of n objects taken r at a time.

Thus,

(
n
r

)
represents the number of different groups of size r that could be

selected from a set of n objects when the order of selection is not considered relevant.

Equivalently,

(
n
r

)
is the number of subsets of size r that can be chosen from

a set of size n. Using that 0! = 1, note that

(
n
n

)
=

(
n
0

)
=

n!
0!n!

= 1, which is

consistent with the preceding interpretation because in a set of size n there is exactly

1 subset of size n (namely, the entire set), and exactly one subset of size 0 (namely

the empty set). A useful convention is to define

(
n
r

)
equal to 0 when either r > n

or r < 0.

Example

4a

A committee of 3 is to be formed from a group of 20 people. How many different

committees are possible?

Solution There are

(
20

3

)
= 20 · 19 · 18

3 · 2 · 1
= 1140 possible committees. .

Example

4b

From a group of 5 women and 7 men, how many different committees consisting of

2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to

serve on the committee together?

Solution As there are

(
5

2

)
possible groups of 2 women, and

(
7

3

)
possible groups

of 3 men, it follows from the basic principle that there are

(
5

2

) (
7

3

)
= 5 · 4

2 · 1
.

7 · 6 · 5

3 · 2 · 1
= 350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of(
2

2

)(
5

1

)
= 5 out of the

(
7

3

)
= 35 possible groups of 3 men contain both of

the feuding men, it follows that there are 35 − 5 = 30 groups that do not contain

both of the feuding men. Because there are still

(
5

2

)
= 10 ways to choose the 2

women, there are 30 · 10 = 300 possible committees in this case. .

Example

4c

Consider a set of n antennas of which m are defective and n − m are functional

and assume that all of the defectives and all of the functionals are considered indis-

tinguishable. How many linear orderings are there in which no two defectives are

consecutive?

Solution Imagine that the n − m functional antennas are lined up among them-

selves. Now, if no two defectives are to be consecutive, then the spaces between the
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^ 1 ^ 1 ^ 1 . . . ^ 1 ^ 1 ^

1 5 functional

^ 5 place for at most one defective

Figure 1.1 No consecutive defectives.

functional antennas must each contain at most one defective antenna. That is, in the

n − m + 1 possible positions—represented in Figure 1.1 by carets—between the

n − m functional antennas, we must select m of these in which to put the defective

antennas. Hence, there are

(
n − m + 1

m

)
possible orderings in which there is at

least one functional antenna between any two defective ones. .

A useful combinatorial identity, known as Pascal’s identity, is(
n
r

)
=
(
n − 1

r − 1

)
+
(
n − 1

r

)
1 … r … n (4.1)

Equation (4.1) may be proved analytically or by the following combinatorial argu-

ment: Consider a group of n objects, and fix attention on some particular one of

these objects—call it object 1. Now, there are

(
n − 1

r − 1

)
groups of size r that con-

tain object 1 (since each such group is formed by selecting r − 1 from the remaining

n − 1 objects). Also, there are

(
n − 1

r

)
groups of size r that do not contain object

1. As there is a total of

(
n
r

)
groups of size r, Equation (4.1) follows.

The values

(
n
r

)
are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k (4.2)

We shall present two proofs of the binomial theorem. The first is a proof by

mathematical induction, and the second is a proof based on combinatorial consider-

ations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2) reduces to

x + y =
(
1

0

)
x0y1 +

(
1

1

)
x1y0 = y + x
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Assume Equation (4.2) for n − 1. Now,

(x + y)n = (x + y)(x + y)n−1

= (x + y)
n−1∑
k=0

(
n − 1

k

)
xkyn−1−k

=
n−1∑
k=0

(
n − 1

k

)
xk+1yn−1−k +

n−1∑
k=0

(
n − 1

k

)
xkyn−k

Letting i = k + 1 in the first sum and i = k in the second sum, we find that

(x + y)n =
n∑
i=1

(
n − 1

i − 1

)
xiyn−i +

n−1∑
i=0

(
n − 1

i

)
xiyn−i

=
n−1∑
i=1

(
n − 1

i − 1

)
xiyn−i + xn + yn +

n−1∑
i=1

(
n − 1

i

)
xiyn−i

= xn +
n−1∑
i=1

⎡
⎣( n − 1

i − 1

)
+
(
n − 1

i

)⎤⎦ xiyn−i + yn

= xn +
n−1∑
i=1

(
n
i

)
xiyn−i + yn

=
n∑
i=0

(
n
i

)
xiyn−i

where the next-to-last equality follows by Equation (4.1). By induction, the theorem

is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

(x1 + y1)(x2 + y2) · · · (xn + yn)

Its expansion consists of the sum of 2n terms, each term being the product of n fac-

tors. Furthermore, each of the 2n terms in the sum will contain as a factor either xi
or yi for each i = 1, 2, . . . ,n. For example,

(x1 + y1)(x2 + y2) = x1x2 + x1y2 + y1x2 + y1y2

Now, how many of the 2n terms in the sum will have k of the xi’s and (n − k) of
the yi’s as factors? As each term consisting of k of the xi’s and (n − k) of the yi’s
corresponds to a choice of a group of k from the n values x1, x2, . . . , xn, there are(
n
k

)
such terms. Thus, letting xi = x, yi = y, i = 1, . . . ,n, we see that

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k
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Example

4d

Expand (x + y)3.

Solution

(x + y)3 =
(
3

0

)
x0y3 +

(
3

1

)
x1y2 +

(
3

2

)
x2y1 +

(
3

3

)
x3y0

= y3 + 3xy2 + 3x2y + x3 .

Example

4e

How many subsets are there of a set consisting of n elements?

Solution Since there are

(
n
k

)
subsets of size k, the desired answer is

n∑
k=0

(
n
k

)
= (1 + 1)n = 2n

This result could also have been obtained by assigning either the number 0 or the

number 1 to each element in the set. To each assignment of numbers, there cor-

responds, in a one-to-one fashion, a subset, namely, that subset consisting of all

elements that were assigned the value 1. As there are 2n possible assignments, the

result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)

as a subset of the original set. Hence, the number of subsets that contain at least 1

element is 2n − 1. .

1.5 Multinomial Coefficients
In this section, we consider the following problem: A set of n distinct items is to be

divided into r distinct groups of respective sizes n1,n2, . . . ,nr, where
∑r

i=1 ni = n.
How many different divisions are possible? To answer this question, we note that

there are

(
n
n1

)
possible choices for the first group; for each choice of the first group,

there are

(
n − n1
n2

)
possible choices for the second group; for each choice of the

first two groups, there are

(
n − n1 − n2

n3

)
possible choices for the third group; and

so on. It then follows from the generalized version of the basic counting principle

that there are(
n
n1

)(
n − n1
n2

)
· · ·
(
n − n1 − n2 − · · · − nr−1

nr

)

= n!
(n − n1)! n1!

(n − n1)!
(n − n1 − n2)! n2!

· · · (n − n1 − n2 − · · · − nr−1)!

0! nr!

= n!
n1! n2! · · ·nr!

possible divisions.

Another way to see this result is to consider the n values 1, 1, . . . , 1, 2, . . . , 2, . . . ,

r, . . . , r, where i appears ni times, for i = 1, . . . , r. Every permutation of these values
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corresponds to a division of the n items into the r groups in the following manner:

Let the permutation i1, i2, . . . , in correspond to assigning item 1 to group i1, item 2 to

group i2, and so on. For instance, if n = 8 and if n1 = 4, n2 = 3, and n3 = 1, then

the permutation 1, 1, 2, 3, 2, 1, 2, 1 corresponds to assigning items 1, 2, 6, 8 to the first

group, items 3, 5, 7 to the second group, and item 4 to the third group. Because every

permutation yields a division of the items and every possible division results from

some permutation, it follows that the number of divisions of n items into r distinct
groups of sizes n1,n2, . . . ,nr is the same as the number of permutations of n items

of which n1 are alike, and n2 are alike, . . ., and nr are alike, which was shown in

Section 1.3 to equal
n!

n1!n2! · · · nr!
.

Notation

If n1 + n2 + · · · + nr = n, we define

(
n

n1,n2, . . . ,nr

)
by

(
n

n1,n2, . . . ,nr

)
= n!
n1! n2! · · · nr!

Thus,

(
n

n1,n2, . . . ,nr

)
represents the number of possible divisions of n distinct

objects into r distinct groups of respective sizes n1,n2, . . . ,nr.

Example

5a

A police department in a small city consists of 10 officers. If the department policy is

to have 5 of the officers patrolling the streets, 2 of the officers working full time at the

station, and 3 of the officers on reserve at the station, how many different divisions

of the 10 officers into the 3 groups are possible?

Solution There are
10!

5! 2! 3!
= 2520 possible divisions. .

Example

5b

Ten children are to be divided into an A team and a B team of 5 each. The A team

will play in one league and the B team in another. How many different divisions are

possible?

Solution There are
10!

5! 5!
= 252 possible divisions. .

Example

5c

In order to play a game of basketball, 10 children at a playground divide themselves

into two teams of 5 each. How many different divisions are possible?

Solution Note that this example is different fromExample 5b because now the order

of the two teams is irrelevant. That is, there is no A or B team, but just a division

consisting of 2 groups of 5 each. Hence, the desired answer is

10!/(5! 5!)

2!
= 126 .

The proof of the following theorem, which generalizes the binomial theorem, is

left as an exercise.
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The multinomial theorem

(x1 + x2 + · · · + xr)n =
∑

(n1, . . . ,nr) :
n1 + · · · + nr = n

(
n

n1,n2, . . . ,nr

)
xn11 x

n2
2 · · · xnrr

That is, the sum is over all nonnegative integer-valued vectors (n1,n2, . . . ,nr)
such that n1 + n2 + · · · + nr = n.

The numbers

(
n

n1,n2, . . . ,nr

)
are known as multinomial coefficients.

Example

5d

In the first round of a knockout tournament involving n = 2m players, the n players

are divided into n/2 pairs, with each of these pairs then playing a game. The losers

of the games are eliminated while the winners go on to the next round, where the

process is repeated until only a single player remains. Suppose we have a knockout

tournament of 8 players.

(a) How many possible outcomes are there for the initial round? (For instance,

one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats 8.)

(b) How many outcomes of the tournament are possible, where an outcome gives

complete information for all rounds?

Solution One way to determine the number of possible outcomes for the initial

round is to first determine the number of possible pairings for that round. To do so,

note that the number of ways to divide the 8 players into a first pair, a second pair, a

third pair, and a fourth pair is

(
8

2, 2, 2, 2

)
= 8!

24
. Thus, the number of possible pair-

ings when there is no ordering of the 4 pairs is
8!

24 4!
. For each such pairing, there are

2 possible choices from each pair as to the winner of that game, showing that there

are
8!24

24 4!
= 8!

4!
possible results of round 1. [Another way to see this is to note that

there are

(
8

4

)
possible choices of the 4 winners and, for each such choice, there are

4! ways to pair the 4 winners with the 4 losers, showing that there are 4!

(
8

4

)
= 8!

4!
possible results for the first round.]

Similarly, for each result of round 1, there are
4!

2!
possible outcomes of round 2,

and for each of the outcomes of the first two rounds, there are
2!

1!
possible outcomes

of round 3. Consequently, by the generalized basic principle of counting, there are
8!

4!

4!

2!

2!

1!
= 8! possible outcomes of the tournament. Indeed, the same argument

can be used to show that a knockout tournament of n = 2m players has n! possible
outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct

argument by showing that there is a one-to-one correspondence between the set of
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possible tournament results and the set of permutations of 1, . . . ,n. To obtain such

a correspondence, rank the players as follows for any tournament result: Give the

tournament winner rank 1, and give the final-round loser rank 2. For the two play-

ers who lost in the next-to-last round, give rank 3 to the one who lost to the player

ranked 1 and give rank 4 to the one who lost to the player ranked 2. For the four play-

ers who lost in the second-to-last round, give rank 5 to the one who lost to player

ranked 1, rank 6 to the one who lost to the player ranked 2, rank 7 to the one who

lost to the player ranked 3, and rank 8 to the one who lost to the player ranked 4.

Continuing on in this manner gives a rank to each player. (A more succinct descrip-

tion is to give the winner of the tournament rank 1 and let the rank of a player who

lost in a round having 2k matches be 2k plus the rank of the player who beat him, for

k = 0, . . . ,m − 1.) In this manner, the result of the tournament can be represented

by a permutation i1, i2, . . . , in, where ij is the player who was given rank j. Because
different tournament results give rise to different permutations, and because there is

a tournament result for each permutation, it follows that there are the same number

of possible tournament results as there are permutations of 1, . . . ,n. .

Example

5e

(x1 + x2 + x3)
2 =

(
2

2, 0, 0

)
x21x

0
2x

0
3 +

(
2

0, 2, 0

)
x01x

2
2x

0
3

+
(

2

0, 0, 2

)
x01x

0
2x

2
3 +

(
2

1, 1, 0

)
x11x

1
2x

0
3

+
(

2

1, 0, 1

)
x11x

0
2x

1
3 +

(
2

0, 1, 1

)
x01x

1
2x

1
3

= x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3 .

*1.6 The Number of Integer Solutions of Equations
An individual has gone fishing at Lake Ticonderoga, which contains four types of

fish: lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to

be the numbers of each type of fish caught, let us determine the number of possible

outcomes when a total of 10 fish are caught. To do so, note that we can denote the

outcome of the fishing trip by the vector (x1, x2, x3, x4) where x1 is the number of

trout that are caught, x2 is the number of catfish, x3 is the number of bass, and x4 is
the number of bluefish. Thus, the number of possible outcomes when a total of 10 fish

are caught is the number of nonnegative integer vectors (x1, x2, x3, x4) that sum to 10.

More generally, if we supposed there were r types of fish and that a total of n
were caught, then the number of possible outcomes would be the number of non-

negative integer-valued vectors x1, . . . , xr such that

x1 + x2 + . . . + xr = n (6.1)

To compute this number, let us start by considering the number of positive integer-

valued vectors x1, . . . , xr that satisfy the preceding. To determine this number, sup-

pose that we have n consecutive zeroes lined up in a row:

0 0 0 . . . 0 0

∗ Asterisks denote material that is optional.
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0 ^ 0 ^ 0 ^ . . . ^ 0 ^ 0

n objects 0

Choose r 2 1 of the spaces ^.

Figure 1.2 Number of positive solutions.

Note that any selection of r − 1 of the n − 1 spaces between adjacent zeroes (see

Figure 1.2) corresponds to a positive solution of (6.1) by letting x1 be the number of

zeroes before the first chosen space, x2 be the number of zeroes between the first

and second chosen space, . . ., and xn being the number of zeroes following the last

chosen space.

For instance, if we have n = 8 and r = 3, then (with the choices represented by dots)

the choice

0 . 0 0 0 0 . 0 0 0

corresponds to the solution x1 = 1, x2 = 4, x3 = 3. As positive solutions of (6.1)

correspond, in a one-to-one fashion, to choices of r − 1 of the adjacent spaces, it

follows that the number of differerent positive solutions is equal to the number of

different selections of r − 1 of the n − 1 adjacent spaces. Consequently, we have

the following proposition.

Proposition

6.1

There are

(
n − 1

r − 1

)
distinct positive integer-valued vectors (x1, x2, . . . , xr) sat-

isfying the equation

x1 + x2 + · · · + xr = n, xi > 0, i = 1, . . . , r

To obtain the number of nonnegative (as opposed to positive) solutions, note

that the number of nonnegative solutions of x1 + x2 + · · · + xr = n is the same

as the number of positive solutions of y1 + · · · + yr = n + r (seen by letting

yi = xi + 1, i = 1, . . . , r). Hence, from Proposition 6.1, we obtain the following

proposition.

Proposition

6.2

There are

(
n + r − 1

r − 1

)
distinct nonnegative integer-valued vectors (x1, x2, . . . , xr)

satisfying the equation

x1 + x2 + · · · + xr = n

Thus, using Proposition 6.2, we see that there are

(
13

3

)
= 286 possible outcomes

when a total of 10 Lake Ticonderoga fish are caught.
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Example

6a

Howmany distinct nonnegative integer-valued solutions of x1 + x2 = 3 are possible?

Solution There are

(
3 + 2 − 1

2 − 1

)
= 4 such solutions: (0, 3), (1, 2), (2, 1), (3, 0). .

Example

6b

An investor has $20,000 to invest among 4 possible investments. Each investment

must be in units of $1000. If the total $20,000 is to be invested, how many different

investment strategies are possible? What if not all the money needs to be invested?

Solution If we let xi, i = 1, 2, 3, 4, denote the number of thousands invested in

investment i, then, when all is to be invested, x1, x2, x3, x4 are integers satisfying the

equation

x1 + x2 + x3 + x4 = 20 xi Ú 0

Hence, by Proposition 6.2, there are

(
23

3

)
= 1771 possible investment strategies. If

not all of the money needs to be invested, then if we let x5 denote the amount kept in

reserve, a strategy is a nonnegative integer-valued vector (x1, x2, x3, x4, x5) satisfying
the equation

x1 + x2 + x3 + x4 + x5 = 20

Hence, by Proposition 6.2, there are now

(
24

4

)
= 10,626 possible strategies. .

Example

6c

How many terms are there in the multinomial expansion of (x1 + x2 + · · · + xr)n?

Solution

(x1 + x2 + · · · + xr)n =
∑(

n
n1, . . . ,nr

)
xn11 · · · xnrr

where the sum is over all nonnegative integer-valued (n1, . . . ,nr) such that n1 + · · · +
nr = n. Hence, by Proposition 6.2, there are

(
n + r − 1

r − 1

)
such terms. .

Example

6d

Let us consider again Example 4c, in which we have a set of n items, of which m are

(indistinguishable and) defective and the remaining n − m are (also indistinguish-

able and) functional. Our objective is to determine the number of linear orderings

in which no two defectives are next to each other. To determine this number, let us

imagine that the defective items are lined up among themselves and the functional

ones are now to be put in position. Let us denote x1 as the number of functional

items to the left of the first defective, x2 as the number of functional items between

the first two defectives, and so on. That is, schematically, we have

x1 0 x2 0 · · · xm 0 xm+1

Now, there will be at least one functional item between any pair of defectives as long

as xi > 0, i = 2, . . . ,m. Hence, the number of outcomes satisfying the condition is

the number of vectors x1, . . . , xm+1 that satisfy the equation

x1 + · · · + xm+1 = n − m, x1 Ú 0, xm+1 Ú 0, xi > 0, i = 2, . . . , m
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But, on letting y1 = x1 + 1, yi = xi, i = 2, . . . ,m, ym+1 = xm+1 + 1, we see that

this number is equal to the number of positive vectors (y1, . . . , ym+1) that satisfy the

equation

y1 + y2 + · · · + ym+1 = n − m + 2

Hence, by Proposition 6.1, there are

(
n − m + 1

m

)
such outcomes, in agreement

with the results of Example 4c.

Suppose now that we are interested in the number of outcomes in which each

pair of defective items is separated by at least 2 functional items. By the same rea-

soning as that applied previously, this would equal the number of vectors satisfying

the equation

x1 + · · · + xm+1 = n − m, x1 Ú 0, xm+1 Ú 0, xi Ú 2, i = 2, . . . , m

Upon letting y1 = x1 + 1, yi = xi − 1, i = 2, . . . ,m, ym+1 = xm+1 + 1, we see that

this is the same as the number of positive solutions of the equation

y1 + · · · + ym+1 = n − 2m + 3

Hence, from Proposition 6.1, there are

(
n − 2m + 2

m

)
such outcomes. .

Summary

The basic principle of counting states that if an experiment
consisting of two phases is such that there are n possible
outcomes of phase 1 and, for each of these n outcomes,
there are m possible outcomes of phase 2, then there are
nm possible outcomes of the experiment.

There are n! = n(n − 1) · · · 3 · 2 · 1 possible linear
orderings of n items. The quantity 0! is defined to equal 1.

Let (
n
i

)
= n!

(n − i)! i!

when 0 … i … n, and let it equal 0 otherwise. This quan-
tity represents the number of different subgroups of size i
that can be chosen from a set of size n. It is often called a

binomial coefficient because of its prominence in the bino-
mial theorem, which states that

(x + y)n =
n∑
i=0

(
n
i

)
xiyn−i

For nonnegative integers n1, . . . ,nr summing to n,

(
n

n1,n2, . . . ,nr

)
= n!
n1!n2! · · · nr!

is the number of divisions of n items into r distinct
nonoverlapping subgroups of sizes n1,n2 . . . ,nr. These
quantities are called multinomial coefficients.

Problems

1. (a)How many different 7-place license plates are possi-
ble if the first 2 places are for letters and the other 5 for
numbers?

(b) Repeat part (a) under the assumption that no letter or
number can be repeated in a single license plate.

2. How many outcome sequences are possible when a die
is rolled four times, where we say, for instance, that the
outcome is 3, 4, 3, 1 if the first roll landed on 3, the second
on 4, the third on 3, and the fourth on 1?

3. Ten employees of a company are to be assigned to 10
different managerial posts, one to each post. In how many
ways can these posts be filled?

4. John, Jim, Jay, and Jack have formed a band con-
sisting of 4 instruments. If each of the boys can play
all 4 instruments, how many different arrangements are
possible? What if John and Jim can play all 4 instru-
ments, but Jay and Jack can each play only piano and
drums?
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5. A safe can be opened by inserting a code consisting of
three digits between 0 and 9. How many codes are possi-
ble? How many codes are possible with no digit repeated?
How many codes starting with a 1 are possible?

6. A well-known nursery rhyme starts as follows:
“As I was going to St. Ives

I met a man with 7 wives.

Each wife had 7 sacks.

Each sack had 7 cats.

Each cat had 7 kittens. . .”

How many kittens did the traveler meet?

7. (a) In howmany ways can 3 boys and 3 girls sit in a row?

(b) In how many ways can 3 boys and 3 girls sit in a row if
the boys and the girls are each to sit together?

(c) In how many ways if only the boys must sit together?

(d) In howmany ways if no two people of the same sex are
allowed to sit together?

8. When all letters are used, how many different letter
arrangements can be made from the letters

(a) Partying?
(b)Dancing?

(c)Acting?

(d) Singing?

9. A box contains 13 balls, of which 4 are yellow, 4 are
green, 3 are red, and 2 are blue. Find the number of ways
in which these balls can be arranged in a line.

10. In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement?

(b) persons A and Bmust sit next to each other?

(c) there are 4men and 4 women and no 2men or 2 women
can sit next to each other?

(d) there are 5 men and they must sit next to one another?

(e) there are 4 married couples and each couple must sit
together?

11. In how many ways can 3 novels, 2 mathematics books,
and 1 chemistry book be arranged on a bookshelf if

(a) the books can be arranged in any order?

(b) the mathematics books must be together and the nov-
els must be together?

(c) the novels must be together, but the other books can
be arranged in any order?

12.How many 3 digit numbers xyz, with x, y, z all ranging
from 0 to 9 have at least 2 of their digits equal. How many
have exactly 2 equal digits.

13.How many different letter configurations of length
4 or 5 can be formed using the letters of the word
ACHIEVE?

14. Five separate awards (best scholarship, best leadership
qualities, and so on) are to be presented to selected stu-
dents from a class of 30. How many different outcomes
are possible if

(a) a student can receive any number of awards?

(b) each student can receive at most 1 award?

15. Consider a group of 20 people. If everyone shakes
hands with everyone else, how many handshakes take
place?

16.How many distinct triangles can be drawn by joining
any 8 dots on a piece of paper? Note that the dots are in
such a way that no 3 of them form a straight line.

17.A dance class consists of 22 students, of which 10 are
women and 12 are men. If 5 men and 5 women are to be
chosen and then paired off, howmany results are possible?

18.A team consisting of 5 players is to be chosen from
a class of 12 boys and 9 girls. How many choices are
possible if

(a) all players are of the same gender?

(b) the team includes both genders?

19. Seven different gifts are to be distributed among 10
children. How many distinct results are possible if no child
is to receive more than one gift?

20.A team of 9, consisting of 2 mathematicians, 3 statisti-
cians, and 4 physicists, is to be selected from a faculty of 10
mathematicians, 8 statisticians, and 7 physicists. Howmany
teams are possible?

21. From a group of 8 women and 6 men, a committee con-
sisting of 3 men and 3 women is to be formed. How many
different committees are possible if

(a) 2 of the men refuse to serve together?

(b) 2 of the women refuse to serve together?

(c) 1 man and 1 woman refuse to serve together?

22.A person has 8 friends, of whom 5 will be invited to a
party.

(a)Howmany choices are there if 2 of the friends are feud-
ing and will not attend together?

(b)How many choices if 2 of the friends will only attend
together?

23. Consider the grid of points shown at the top of the
next column. Suppose that, starting at the point labeled
A, you can go one step up or one step to the right at each
move. This procedure is continued until the point labeled
B is reached. How many different paths from A to B are
possible?
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Hint: Note that to reach B from A, you must take 4 steps
to the right and 3 steps upward.

B

A

24. In Problem 23, how many different paths are there
from A to B that go through the point circled in the fol-
lowing lattice?

B

A

25.A psychology laboratory conducting dream research
contains 3 rooms, with 2 beds in each room. If 3 sets of
identical twins are to be assigned to these 6 beds so that
each set of twins sleeps in different beds in the same room,
how many assignments are possible?

26. (a) Show
∑n

k=0

(n
k

)
2k = 3n

(b) Simplify
∑n

k=0

(n
k

)
xk

27. Expand (4x − 3y)4.

28. The game of bridge is played by 4 players, each of
whom is dealt 13 cards. How many bridge deals are pos-
sible?

29. Expand (x1 + 2x2 + 3x3)4.

30. If 12 people are to be divided into 3 committees
of respective sizes 3, 4, and 5, how many divisions are
possible?

31. If 10 gifts are to be distributed among 3 friends,
how many distributions are possible? What if each friend
should receive at least 3 gifts?

32. Ten weight lifters are competing in a team weight-
lifting contest. Of the lifters, 3 are from the United States,
4 are from Russia, 2 are from China, and 1 is from Canada.
If the scoring takes account of the countries that the lifters
represent, but not their individual identities, how many
different outcomes are possible from the point of view
of scores? How many different outcomes correspond to
results in which the United States has 1 competitor in the
top three and 2 in the bottom three?

33.Delegates from 10 countries, including Russia, France,
England, and the United States, are to be seated in a row.
How many different seating arrangements are possible if
the French and English delegates are to be seated next to
each other and the Russian and U.S. delegates are not to
be next to each other?

*34. If 8 identical blackboards are to be divided among 4
schools, how many divisions are possible? How many if
each school must receive at least 1 blackboard?

*35.An elevator starts at the basement with 8 people (not
including the elevator operator) and discharges them all by
the time it reaches the top floor, number 6. In how many
ways could the operator have perceived the people leaving
the elevator if all people look alike to him? What if the 8
people consisted of 5 men and 3 women and the operator
could tell a man from a woman?

*36.We have $20,000 that must be invested among 4 pos-
sible opportunities. Each investment must be integral in
units of $1000, and there are minimal investments that
need to be made if one is to invest in these opportuni-
ties. The minimal investments are $2000, $2000, $3000,
and $4000. How many different investment strategies are
available if

(a) an investment must be made in each opportunity?

(b) investments must be made in at least 3 of the 4 oppor-
tunities?

*37. Suppose that 10 fish are caught at a lake that contains
5 distinct types of fish.

(a)How many different outcomes are possible, where an
outcome specifies the numbers of caught fish of each of
the 5 types?

(b)Howmany outcomes are possible when 3 of the 10 fish
caught are trout?

(c) How many when at least 2 of the 10 are trout?
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Theoretical Exercises

1. Prove the generalized version of the basic counting prin-
ciple.

2. Two experiments are to be performed. The first can
result in any one ofm possible outcomes. If the first exper-
iment results in outcome i, then the second experiment
can result in any of ni possible outcomes, i = 1, 2, . . . ,m.
What is the number of possible outcomes of the two exper-
iments?

3. In howmany ways can r objects be selected from a set of
n objects if the order of selection is considered relevant?

4. There are

(
n
r

)
different linear arrangements of n balls

of which r are black and n − r are white. Give a combina-
torial explanation of this fact.

5. Determine the number of vectors (x1, . . . , xn), such that
each xi is either 0 or 1 and

n∑
i=1

xi Ú k

6. How many vectors x1, . . . , xk are there for which each xi
is a positive integer such that 1 … xi … n and x1 < x2 <

· · · < xk?

7. Give an analytic proof of Equation (4.1).

8. Prove that(
n + m

r

)
=
(
n
0

)(
m
r

)
+
(
n
1

)(
m

r − 1

)

+ · · · +
(
n
r

)(
m
0

)

Hint: Consider a group of nmen andmwomen. Howmany
groups of size r are possible?

9. Use Theoretical Exercise 8 to prove that

(
2n
n

)
=

n∑
k=0

(
n
k

)2

10. From a group of n people, suppose that we want to
choose a committee of k, k … n, one of whom is to be des-
ignated as chairperson.

(a) By focusing first on the choice of the committee and

then on the choice of the chair, argue that there are

(
n
k

)
k

possible choices.

(b) By focusing first on the choice of the nonchair
committee members and then on the choice of the chair,

argue that there are

(
n

k − 1

)
(n − k + 1) possible

choices.

(c) By focusing first on the choice of the chair and then
on the choice of the other committee members, argue that

there are n
(
n − 1
k − 1

)
possible choices.

(d) Conclude from parts (a), (b), and (c) that

k

(
n
k

)
= (n − k + 1)

(
n

k − 1

)
= n

(
n − 1

k − 1

)

(e)Use the factorial definition of

(
m
r

)
to verify the iden-

tity in part (d).

11. The following identity is known as Fermat’s combina-
torial identity:

(
n
k

)
=

n∑
i=k

(
i − 1
k − 1

)
n Ú k

Give a combinatorial argument (no computations are
needed) to establish this identity.
Hint: Consider the set of numbers 1 through n. How many
subsets of size k have i as their highest numberedmember?

12. Consider the following combinatorial identity:

n∑
k=1

k
(
n
k

)
= n · 2n−1

(a) Present a combinatorial argument for this identity by
considering a set of n people and determining, in two ways,
the number of possible selections of a committee of any
size and a chairperson for the committee.
Hint:

(i) Howmany possible selections are there of a commit-
tee of size k and its chairperson?

(ii) How many possible selections are there of a chair-
person and the other committee members?

(b) Verify the following identity for n = 1, 2, 3, 4, 5:

n∑
k=1

(
n
k

)
k2 = 2n−2n(n + 1)

For a combinatorial proof of the preceding, consider a set
of n people and argue that both sides of the identity rep-
resent the number of different selections of a committee,
its chairperson, and its secretary (possibly the same as the
chairperson).


